Higher standards. While it is crucial to test bikes in accordance with ISO 4210, it is not enough — and does not by itself ensure a safe bicycle. For this reason, some testing labs, including the Zedler Institute, and manufacturers have developed their own testing requirements that go beyond ISO 4210.
Recognized test labs use different criteria to differentiate between a bike’s intended use and permissible total weight, and distinguish between electric and conventional bikes. Manufacturers that seek to minimize product failures should establish their own, reasonable testing standards. Or, if they choose to partner with a testing lab, they should first ask these questions:
• Does the lab perform individual tests with one test piece — the preferred option — or does it use a new test piece for each load case — a poor practice that, absurdly, is allowed under ISO 4210?
• Does the lab complement the ISO required tests with tests on such essential components that aren’t mentioned in the standard, such as disc brakes, fork steerer tubes, the rear triangle on full-suspension frames, and, for impact tests, the rear triangle of all mountain bike frames?
• Does the lab vary test loads to account for different types of use? For example, mountain bikes should be tested at different loads depending whether they are intended for cross-country, allmountain, enduro, freeride or downhill use.
• Does the lab use more realistic load types and levels beyond those stipulated by the standard?
• Does the lab perform materialspecific tests? Mechanical accuracy is another important and often neglected aspect of a test procedure. Test pieces must be mounted as realistically as possible — something not always specified by the standard. For example, dropouts should be tested only when they are clamped on the actual thru axles or quick-releases they are paired with, so that the loads acting on them better reflect real-world riding conditions.
(...)
Read the entire article here.
Author: Dirk Zedler